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Quantum melting instability of a striped domain wall in 
the two-dimensional t- J model 
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Theorelische Physik, ETIi-H6nggerberg, 8093 ZUrich. Swieerland 

Received 4 March 1994, in final form 28 lune 1994 

Abstract We investigate the stability of a domain wall io the striped phase with siiuItvleons 
charge and spin ordering in dopea planar antife"ag,ets. The line defects gain magnetic 
energy but the l o c a l i o n  of holes costs k i d c  energy. A Hamee-Fock appmimation is 
used to estimate the energy wst of a static kink in the domain wall. Such kinks can gain 
kinetic energy by delocalizing along the l i e .  We find that for values oft 2 J this energy gain 
surpasses the cost in mametic energy so that a qmtnm melting of the domain walls through 
the proliferation of ldnks is predicted for this parameter regime. 

1. Introduction 

When holes are doped into a two-dimensional antiferromagnet a number of different broken 
symmetry phases may occur. One such phase is a so-called stripe phase characterized by 
simultaneous charge and spin ordering. In this phase there are regions of commensurate 
antiferromagnetic ordering separated by linear domain walls with the doped holes localized 
on these walls. Such structures have been found in Hartree-Fock calculations for the single- 
band Hubbard model for intermediate-to-strong coupling and in multiband Hubbard models 
for oxides 11-41. In the single-band Hubbard model Inui and Littlewood [5] found that 
there was a critical value of the on-site repulsion, U, beyond which no stable HartreeFock 
solution could be found. In the closely related t-J model, F'relovSek and Zotos [6] have 
found evidence of such domain wall structures in the hole-hole correlation functions which 
evaluate exactly on finite clusters, when the ratio of J / t  exceeds a critical value, which 
they estimate as Jc N 1.5t. They estimate that true phase separation at low doping occurs 
only for a lage  value of the exchange coupling, J > 2.5t). PrelovSek and Zotos 
[6] further made the interesting proposal that it is the existence of thii striped or domain 
wall phase which accounts for the apparent large discrepancy between the criteria for phase 
separation at low doping in one and two dimensions. In the parameter regime J < Jc 
but J 2 0.3r they propose that the holes pair but do not form larger complexes so that a 
d-wave superconducting state follows. It is therefore of some interest to understand how 
and why such a linear domain wall becomes unstable at values J i Jc. Clearly some 
form of quantum melting process driven by the kinetic energy of the holes must occur. In 
this paper we will examine one way in which such a quantum melting process may occur, 
namely hough  the prolieration of kinks. 

While such striped phases with simultaneous incommensurate charge and spin ordering 
have not been reported in the cuprates, they have, however, been observed in related 
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compounds, namely doped LazNiO, [7]. There are two differences between nickelates 
and cuprates. One is that the parent insulator is an s = 1 not a s = 1/2 antiferromagnetic. 
A second difference is the increased electron-phonon interaction in the nickelates [SI so 
that there is an enhanced tendency for holes to form localized polarons. We can crudely 
approximate these differences between the nickelates and cuprates through an increase in 
the value of J / t  in the former compounds. The difference in physical behaviour between 
the two classes of materials could be ascribed to a change in the ratio of J / t  through the 
critical value J J t .  

These striped phases are conveniently described within a Hamee-Fock approximation. 
However the local constraint in the strongly correlated t-J model cannot be handled in 
this way. Therefore we consider a single-band model where we release the constraint but 
include a strong on-site repulsion, U, to mimic the constraint. We also include both nearest- 
neighbour (") and next-nearest-neighbour (N") hopping terms in the kinetic energy. This 
t-t'-J-U model is then examined withii a Hartree-Fock scheme. First the energy of a kink 
in a (1.1) domain wall is calculated and then the quantum delocalization energy gained by 
allowing the kink to move along the line defect. In this way we estimate the total energy 
to create a kink, and the stability criterion we use is that this energy should be positive. 

2. Hartre+Fock appmxhaiion for simultaneous charge snd spin ordering 

We consider a modified t-J model described by the Hamiltonian 

It consists of the standard t-J model, with three-site terms and an on-site Coulomb (U) 
term. In a Hartree-Fock theory, it is difficult to take into account the local constraint of 
no doubly occupied states, so the U term is included to approximate this restriction. The 
sums over the indices i and j are taken over NN (i, j) and the sums with i ,  j and k are over 
all triplets (i, j ,  k) where (i, j )  and (j, k)  are NN pairs. The Hartree-Fock approximation 
is obtained by introducing the position-dependent expectation values, (nib) and (c2cj.) 
(U = t, $), which in turn are to be determined self-consistently. The numerical solution is 
facilitated by dividing the system into quare supercells of N sites with periodic boundary 
conditions similar to 111. Each cell contains N t  electrons with spin up and N l  electrons with 
spin down. Here we consider the hole-doped case with N t  + NJ e N .  After factorizing 
the Hamiltonian we obtain a Hamee-Fock form which can be written as 

where the constant term H,,, and the N x N matrices H t  and HA depend on the expectation 
values (c:cju); more precisely, HI depends on the values of (c$cj+) and H$ on (cif,cjt). 
We diagonalize the Hamiltonian by making the linear transformation 
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with 

In the sums, j runs over the N sites of a supercell, while R runs over the positions T I .  in 
every supercell. After diagonalization, the Hamiltonian has the form 

The 2 x N energy levels that result are populated up to the Fermi level, yielding an 
expectation value 

The expectation vdues ( c ~ c j . , )  are to be solved for self-consistency. In practice, we started 
with some reasonable initial values, performed the diagonalization, inserted the expectation 
values resulting from (6) back into the Hamiltonian (2), and iterated the procedure until it 
converged to a self-consistent solution. 

( a )  ( b l  
Figure 1. The spin and charge ordering patfems showing diagonal solitons with no kinks (a) 
and a double ldnk (b) for the (11x11) sopenell with @odic boundary conditions used here. 

We investigated first the situation where the Hartree-Fock ground state has a domain 
wall with a line of holes (soliton) on the diagonal of a square supercell. The form of the 
solution is illustrated in figure 1. We started with the parameter set: t = 1, J = 112, 
t' = 1/8 and U = 16. The values of t ,  J and t' correspond to an intrinsic ratio of 
U / t  = 8 when we use the relationship for the larged limit of the Hubhard model, that 
the Heisenberg exchange JH = 4 t Z / U .  The large additional value U = 16 was included 
to reshict the states with doubly occupied sites. We used supercells with 11 x 11 sites and 
the numbers of ?-spin and $-spin electrons Nt = N+ = 55. This leaves a single diagonal 
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soliton with a hole number Nh = 11 (with respect to half-fining). We checked that with 
these parameter values, the diagonal soliton is lower in energy than either the vertical or 
horizontal solitons and also stable with respect to removing or adding holes to the soliton 
line. Note that the holes are not localized on a single site but for these parameter values 
the holes tend to spread over two sites, the width of the domain wall however does not 
vary rapidly in the Hartree-Fock calculations. In table 1 we list the total energy per site 
that we obtained for the diagonal soliton with no kinks as  en^. Also listed is the total 
energy per site of the HartceFock solution at half-filling, Em. The average energy per 
hole in the no-kink solution is E& = (2) ( E a  - E m )  /11. We then reduced the value of 
the t parameter in steps to the value of t = 0.6 keeping the other parameter values fixed. 
This reduces the kinetic energy of the holes without changing the values of the exchange 
coupling introduced by the virtual processes. 

H E  Wem.0 and T M Rice 

Table 1. The values of the fatal energy per site of the Hyuee-Fock solution with a double ldnk 
(EK) .  with no lank ( E d  and at M-filling EW. A€' is the energy of a sotic double hnk. 
(01 V2) is the overlap upon anslaIion of lhe double kink as desmbcd in the texr. E. b the 
&on encrgy of the double lank including h e  h e t i c  cnergy of localization. 

I EK  eo^ EHF AE. (St *d EC 

0.6 - 0.5715 - 0.5731 - 0.5862 
0.7 - 0.6146 - 0.6152 - 0.6170 
0.8 - 0,6621 - 0.6617 - 0.6525 
0.85 - 0.6876 - 0.6866 - 0.6719 
0.9 - 0.7141 - 0.7127 - 0.6924 
0.925 - 0.7278 - 0.7261 - 0.7031 
0.95 - 0.7418 - 0.7398 - 0.7141 
0.975 - 0.7560 - 0.7538 - 0.7253 
1.0 - 0.7704 - 0.7680 - 0.7368 

0.0568 
0.0522 
0.0490 
0.0478 
0.0467 
0.0462 
0.0456 
0.0450 
0.0446 

0.0117 0.043 
0.0148 0.034 
0.0185 0.024 
0.0247. , 0.015 
0.0570 -0.035 
0.0601 -0.041 
0.0613 -0.045 
0.0657 -0.054 
0.0691 -0.062 

3. Kinks in the diagonal soliton line 

For computational convenience, we introduce a double kink consisting of a separated kink 
and an anti kink as illustrated in figure I@). (For one kink only, a combination of 
and antiperiodic boundary conditions would have been required. As a result, Hi,. would 
have depended not only on the expectation values (c6c jr )  but also on (c$j+), leading to 
a linear equation system of size 2N x 2N instead of N x N . )  Again we calculated the 
total energy per site, EK for the solution with a double kink. Note in the presence of the 
double kink an extra hole is introduced so that the supercell in figure I@) has Nh = 12 and 
N+ = 55, NJ = 54. The extra hole and spin is shared between the kink and antikink. The 
unequal numbers of t- and $-spin electrons cause no problems in the calculation, but one 
has to check separately that the Fermi energies of the t- and $-bands are consistent with a 
minimization of the total energy of the system. 

To investigate the dynamics of a moving double kink, we consider a Hamiltonian 

? ~ O d i C  

where the indices m, n mark the location of a double kink along the diagonal soliton line 
and the summation (m, n) is taken over NN locations. The operator a$a, moves the double 
kink from location n to m. This can he achieved by moving the whole electron pattem 
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in figure 1@) along the diagonal. The kinetic energy associated with Hamiltonian (7) is 
Efin = 2r = ~ ( Y I  I 'H I Yz), where I YI) and I Yz) are the states corresponding to 
adjacent locations of the double kink. To evaluate Eb., we take I YI) and I Yz) to be the 
Haares-Fcck ground states 

and make the approximation (WI I 'H I Yz) N is the Hartree-Fock 
energy eigenvalue corresponding to states I YI) and I Y3). 

The states I Y1) and I Yz) correspond to different Hartree-Fock Hamiltonians, so in 
order to compute the transfer matrix element we must express both states in the original 
basis set defined by the electron number operators cLci.,: 

I Yz) where 

x I C N t t  . ' ' Cii t  I CN1.l .. ' Ci1.l I C ~ J  ' '. CZI$ IC& ' '. C&t I 0) . (9) 

The transformation coefficients for the states Y1 and Yz are noted by trig and si",, 
respectively. 

Once the coefficients have been computed by iteration of the Hartree-Fock 
equations, the coefficcients can be easily deduced by using the fact that I Yz) = T I YI) 
where T is a translation operator moving all electrons by a vector d onto an adjacent lattice 
site along the diagonal direction, so that 

B;,o "&-d)c . (10) 

The overlap (9) can be evaluated as the determinant of an (Nr + N,) x (Nr + N,) 
matrix A, the elements of which are defined by 

0 otherwise. (13) 

The results for (Y1 I Yz) and for the lowest kinetic energy E& are listed in table 1. Note 
that r is larger with increasing values o f t  and the increase near t N 0.85 may heady point 
towards an instability of the HartreeFock solution. 

The physical system we have in mind consists of a fixed (large) number of lattice 
sites with fixed doping. The task is to determine the minimum energy configuration of a 
fixed number of extra holes in an antiferromagnetic background. The average Hartree-Fock 
energy of a hole in the solution with the double kink is E; = (11 x 1 1 ) ( E ~  - Errp)/l2. 
Therefore the extra energy associated with moving an extra hole onto the diagonal soliton 
and creating a static double kink is 

AE* = 12 ( E i - E i K )  = (11 x11)(E~-(12/11)En~+(1/11)E~) . (14) 
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This is the self-energy part of the total energy to create the double kink. Note that an increase 
in domain wall width through the formation of double kinks wiJl lead to a reduction in the 
number of walls. 

When we delocalize the double kink along the diagonal soliton we gain the kinetic energy 
and thus we obtain a minimum creation energy for a double kink as Ec = AE' + EH=. 

This value is listed in table 1 also and plotted in figure. 2 for varying values of the hopping 
parameter, t, keeping the other parameters fixed. We see that the creation energy Eo is 
positive only f o r  values o f t  4 tc,d with &,d = 0.87. A positive value for Ec is necessary 
to insure the stability of the no-kink solution. When the creation energy E, is negative 
in the parameter region t > tc,d, then the no-kink solution is unstable against the creation 
of double kinks due to their quantum mechanical delocalization and a breakdown of the 
no-kink solution ensues though the proliferation of double kinks. 

H E  Kertio and T M Rice 

+ 0.05 

+ 0.025 

0 

-0.025 

-0.05 t 
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Figure 2. The ereation energy of a delocalized double ki& E<, including the self-energy 
and kinetie energy Mn!xibudons. Positive values of Ec an quired for stability of the solllon 
solution displayed in figure l(3. The dher parameters are iixed at J = 0.5, f' = 0.175 and 
U = 16. 

The critical value that we obtain corresponds to a critical ratio J/t,,,j = 0.575. For 
values of J / t  =- 0.575, the soliton Hartree-Fock solution is stable against the proliferation 
of double kinks. This value of J / t , , d  is substantially lower than the critical value estimated 
by PrelovSek and zotos [6] by examining exact diagonalization results on small clusters, 
namely J c / t  N 1.5. %us a wider range of stability for the striped phase with simultaneous 
spin and charge ordering is obtained when we use the criterion of a positive creation energy 
for double kink creation. 

There. are two effects which act to reduce this discrepancy. First if we add the induced 
exchange through the large but finite value of  the Hubbard on-site Coulomb energy U 
we arrive at the total exchange value JW = J + 4*/U. This effect enhances the critical 
ratio to Jmr/t  = 0.79. A second effect is the underestimation of the kinetic energy. For 
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computational convenience we calculated the kinetic energy of the rigid translation of a 
double kink consisting of a separated kink and antikink. If we allow both the kink and 
antikink to move separately so we can expect to double the gain in kinetic energy. This 
effect shifts the critical value of t to tc,s = 0.8 and gives a critical ratio Jmr/t = 0.825 
which is somewhat larger but still substantially lower than the value estimated by PrelovSek 
and Zotos [6] (JJ t  = 1.5). 

4. Conclusions 

In this paper we examined the stability of the striped Hartree-Fock solutions with 
simultaneous spin and charge ordering against the proliferation of kinks and the antikink. 
The method yields no information about the nature of the state after the instability occurs but 
we note that Prelovkk and Zotos [6] found evidence of hole pairing in this parameter region, 
which points towards a superconducting ground state with d9-p symmetry. The stability 
criterion that we obtained with a critical ratio J/tc , .  N 0.8 is quaIitativeIy similar to that 
obtained by PrelovSek and Zotos although a substantial quantitative discrepancy remains. In 
view of the neglect of fluctuations in any Hartree-Fock calculation, it is perbaps reasonable 
that we overestimate the region of stability of the Hartree-Fock solution. 
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